Increasing fMRI Sampling Rate Improves Granger Causality Estimates
نویسندگان
چکیده
Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI) is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD) contrast based whole-head inverse imaging (InI). Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.
منابع مشابه
New Insights into Signed Path Coefficient Granger Causality Analysis
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI re...
متن کاملIs Granger Causality a Viable Technique for Analyzing fMRI Data?
Multivariate neural data provide the basis for assessing interactions in brain networks. Among myriad connectivity measures, Granger causality (GC) has proven to be statistically intuitive, easy to implement, and generate meaningful results. Although its application to functional MRI (fMRI) data is increasing, several factors have been identified that appear to hinder its neural interpretabilit...
متن کاملBOLD Granger Causality Reflects Vascular Anatomy
A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been con...
متن کاملSpatio-temporal Granger causality: A new framework
That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framewo...
متن کاملFiber-centered Granger Causality Analysis
Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fibercentered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014